Await and tasks from the
ground up

Jiti Cincura

www.tabsoverspaces.com

@cincura_net

http://www.tabsoverspaces.com/

00

Single-Threade
Bas

n adjustad

2
e U

d Integer Performance

SPECIN® results

per year

'm Intel Xeon

Intel Core
Intel Pentium

- 4 Intel tanium
= |ntel Celeron

AMD FX

‘= AMD Opteron

AMD Phenom
* AMD Athlon
. |IBM POWER
» PowerPC
Fujitsu SPARC
Sun SPARC
DEC Alpha
= MIPS

'» HP PA-RISC

Source: preshing.com

Current state of CPUs

* Free lunch is over
e 22nm => 50 silicon atoms
* Cooling, frequency

* Smarter processors
* Hyperthreading

* More cores

Coarse-grained parallelism

* Processes are expensive
* Threads are expensive
* A lot of threads =2 context switching

* No cake for developers?

ThreadPool

e OK-ish solution for 2018

* Limited features
* A lot of manual work required

e Tasks to saves us?

Tasks

* Task Parallel Library
e Rich API
* Easy to use (and even easier with async/await)

e Uses ThreadPool
e Usually ©

CPU bound vs |/O bound code

* Threads and tasks vs asynchronous 1/0
* Overlapped I/O

* Asynchronous

* No blocking
* Scalability

* Concurrency
* For I/O there’s no “background thread”

There’s no “background thread”?

* My code =» BCL =» OS/Kernel = IRP
* ISR = DPC = APC =» |OCP

CPU bound vs |/O bound code

public List<Something> LoadSomething()
{
var result = new List<Something>();
for (var i 1l; 1 <= 5; i++)
{
var s = Something.LoadFromNetwork(id: 1i);
result.Add(s);
}

return result;

¥

CPU bound vsi@ound code

réquest jn

CPU bound vs I/O bound code

rem Parallel.For

v work?2
|
7 P
) work4
™ //‘

|

. J

response outT
300ms

CPU bound vsi@ound code

request jn

CPU bound vs I/O bound code

request jn

response Out E Source: Lucian Wischik
~100ms vy

Before async/await

* Asynchronous Programming Model
* BeginXxx, EndXxx

* Try to read stream...

Async/await

e Simpler code for callbacks
* Compiler solves the plumbing
 State machine (similar to IEnumerable<T>)
* For-loops, usings, try-catch blocks, ...

e But could be hard to master
* i.e. deadlocks, performance degradation

* Try to read stream v2...

Async/await

* Works basically on Task/Task<T>/ValueTask<T>
 CPU or I/O bound
* CPU bound tasks

* Delegate tasks

* |/O bound tasks

* Promise tasks

Q&A

