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Current state of CPUs

* Free lunch is over
e 22nm => 50 silicon atoms
* Cooling, frequency

* Smarter processors
* Hyperthreading

* More cores



Coarse-grained parallelism

* Processes are expensive
* Threads are expensive
* A lot of threads =2 context switching

* No cake for developers?



ThreadPool

e OK-ish solution for 2018

* Limited features
* A lot of manual work required

e Tasks to saves us?



Tasks

* Task Parallel Library
e Rich API
* Easy to use (and even easier with async/await)

e Uses ThreadPool
e Usually ©



CPU bound vs |/O bound code

* Threads and tasks vs asynchronous 1/0
* Overlapped I/O

* Asynchronous

* No blocking
* Scalability

* Concurrency
* For I/O there’s no “background thread”



There’s no “background thread”?

* My code =» BCL =» OS/Kernel = IRP
* ISR = DPC = APC =» |OCP



CPU bound vs |/O bound code

public List<Something> LoadSomething()
{
var result = new List<Something>();
for (var i 1l; 1 <= 5; i++)
{
var s = Something.LoadFromNetwork(id: 1i);
result.Add(s);
}

return result;
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CPU bound vs I/O bound code
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CPU bound vs I/O bound code
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Before async/await

* Asynchronous Programming Model
* BeginXxx, EndXxx

* Try to read stream...



Async/await

e Simpler code for callbacks
* Compiler solves the plumbing
 State machine (similar to IEnumerable<T>)
* For-loops, usings, try-catch blocks, ...

e But could be hard to master
* i.e. deadlocks, performance degradation

* Try to read stream v2...



Async/await

* Works basically on Task/Task<T>/ValueTask<T>
 CPU or I/O bound
* CPU bound tasks

* Delegate tasks

* |/O bound tasks

* Promise tasks



Q&A



